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An analytical expression, which has some claim to be the simplest possible, 
is proposed for the potential governing a collinear reaction. It shows the 
desired qualitative features but, with only one available parameter, cannot fit 
a given surface accurately everywhere. The quality of fitting attainable is 
shown using the surface for the O + H2 reaction. 

Because of the simple form of this expression, it is possible to make broad 
generalizations about such reactions. From a plausible assumption about the 
parameter value the energy barrier and the transition state geometry can be 
predicted. These barriers agree well with those suggested by Johnston and 
Parr for hydrogen transfer reactions. 
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1. Introduction 

Many attempts have been made to set up formulae to represent a reaction 
potential. Some have been motivated by theoretical arguments and others by 
practical considerations. Their principal aim has been to reproduce to high 
accuracy the potentials obtained from theoretical calculation of the energy at a 
limited number of nuclear configurations so that the whole surface becomes 
known by interpolation. Many of these formulae have been reviewed by Wagner 
et al. [1] and their performance evaluated using a given set of points for the 
O + H2 reaction. The principal aim of the present work is different. It looks for 
a form of surface sufficiently simple to be used in later theories without losing 
the features essential to such a surface. 

The potential energy of a diatomic molecule is often represented by the Morse 
potential 

V(x) = D(exp (-2ax) - 2  exp (-ax)) (1) 
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where D is the dissociation energy, a depends on the vibration frequency and 
the distance x is measured from the equilibrium separation, x = r -  ro. Although 
this is not an accurate representation of the potential, it does have the correct 
qualitative features and is simple enough to have a convenient solution to its 
Schr6dinger equation. It fails to show the true potential when the atoms come 
very close together i.e. x = - ro  or when they are far apart  and subject to the van 
der Waals attraction. It also fails to represent the potential when the two atoms 
have a significant electrostatic interaction or when the potential is distorted by 
an avoided crossing. 

The Morse potential consists of  two terms. The second term represents the valence 
attraction between the atoms which depends on the penetration of each nucleus 
into the outer electron distribution of  the other and so decreases exponentially 
with distance. The strength of the attraction is governed by the value of D. The 
first term represents the overlap repulsion that sets in when the atoms and their 
orbitals are pushed too closely together. It becomes effective at a shorter distance 
than the attraction. The equilibrium at x = 0 arises from the balance between 
these two terms. 

The situation envisaged here has three atoms, or three moieties, coming together 
in a straight line. The potential is to be modelled at the same level of  accuracy 
and sophistication as the Morse potential. Two distances are involved, the two 
separations between the three atoms. When either distance is large the remaining 
diatomic potential should reduce to the Morse form. When both distances are 
reduced the central a tom will be bonded to both neighbors but with a smaller 
attraction because its available valence orbitals must now be shared. The potential 
needs an extra term to represent this mutual  effect. 

The problem is made more transparent by applying a mapping to the surface. 
For the Morse potential the mapping 

X = exp ( - a x )  (2) 

transforms ( l)  into 

V =  D ( X 2 - 2 X ) .  (3) 

As x becomes large, X becomes small so that the mapping is a kind of  inversion 
and V reduces to zero with X. In this map the potential becomes a simple 
quadratic function of X. This is the simplest function which shows a minimum. 

For the collinear reaction this mapping is generalized to two variables 

X = exp ( - a x ) ,  Y = exp ( - b y )  (4) 

where b and y are defined from the Morse potential for the second distance. The 
most general quadratic form in two variables is now 

V = A ( X  2 - 2X)  + B( y2 _ 2 Y )  + 2 H X Y .  (5) 

This reduces to a Morse potential with dissociation energy A when Y *  0 and 
to one with energy B when X ~ 0. The zero of  potential is when all three atoms 
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are far apart. Since the values of  a, b, A, B are fixed by diatomic information, 
the only undetermined parameter  in V is H. The effect of this final term in V, 
for H > 0, is to reduce the bonding on one side as an atom approaches on the 
other side so the required mutual effect has been added. This is the model potential 
which will be discussed here. 

2. Features of the surface 

The equipotentials of  the surface (5) are found by giving V a constant value. 
For each value of V the result is a conic with a fixed center. The center can be 
found by eliminating the linear terms. So for its coordinates we obtain 

(B(H- A)/(H2- AB), A(H- B)/(H2- AB)). (6) 

When the discriminant, 

H2-AB, (7) 

is positive the conic is a hyperbola and, when it is negative, an ellipse. Thus, if 
H is sufficiently large, V has the typical saddle-point form of a reaction surface. 
I f  H is smaller the surface has a stable minimum for the three atom configuration. 

The surface can have only one critical point, that at its center. However, because 
x and y are real, the variables X and Y cannot be negative and the surface has 
a definite boundary at X = 0 and Y = 0. It is possible, then, to have boundary 
extrema. The point (1, 0) is a minimum on the Y = 0 boundary and it will also 
be a minimum in relation to nearby interior points if H > B. Similarly (0, 1) will 
be a local minimum if H > A. These two conditions together ensure that the 
surface is hyperbolic and represents two stable diatomics with a transition point 
between them. Similarly, if H < A and H < B, the surface will be elliptic and 
will represent a stable triatomic. The boundary extrema are then minimax. I f  H 
lies between A and B, e.g. A > H > B, the center moves out of the physical region 
and the nature of  the surface changes. For a positive discriminant it remains 
hyperbolic and it becomes elliptic for a negative one. In either event the surface 
has one boundary minimum and the bot tom of the channel rises steadily therefrom 
to the minimax on the other boundary. For collinear reactions governed by these 
linear and quadratic terms in the potential energy there are, therefore, only three 
types of  surfaces, the transition state, the stable triatomic and the stable diatomic. 
Surfaces showing other features, such as an unstable intermediate, will require 
higher order terms in the energy to describe them. 

The mapping  from (x, y) to (X, Y) is continuous but not conformal. This means 
that topological features, such as the touching of two lines, are preserved but 
angles are usually changed. In particular, tangents to curves transform into 
tangents but orthogonal trajectories do not transform into orthogonal trajectories. 
An unfortunate consequence is that the reaction path in the (x, y) plane, which 
is an orthogonal trajectory of the equipotentials, does not map into an orthogonal 
trajectory in the (X, Y) plane. 
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The gradient of V in the (X, Y) plane has two components 

Vx = 2 ( A ( X - 1 ) + H Y )  V y = 2 ( B ( Y - 1 ) + H X ) .  (8) 

For a horizontal tangent to the potential curve at a point the first must vanish 
and for a vertical tangent the second. These lines help in understanding the 
graphs. They intersect at the center which does correspond to the saddle point 
in the (x, y) plane. The potential energy at the saddle point is 

Vco, = - A B ( 2 H  - A - B ) /  ( H 2 - A B )  (9) 

and, when the conditions for a saddle point mentioned above are satisfied, this 
energy is negative and approaches zero only if H becomes very large. 

The barrier which the system experiences when it starts from the channel which 
has y large i.e. X =  1, Y = 0  is 

W = Vcol- ( - A )  = A ( H -  B ) 2 / ( H  2 -  A B )  (10) 

while the barrier in the reverse direction is 

WR = V~o~+ B = B ( H - A ) E / ( H 2 - A B ) .  (11) 

When the discriminant (7) is positive, as it must be for a saddle point, both of 
these remain positive. 

3. The O + H2 potential surface 

In order to gain some experience of the model (5) and to discover its practical 
limitations it has been applied to the triplet surface for the O + H2 reaction. This 
has been calculated by Whitlock et al. [2] and has been taken by Wagner et al. 
[1] as a bench mark in their comparisons between fitting functions. 

Since this model has only one available parameter, H, it is completely determined 
by fitting one point. For example, the formula for the barrier height, IV, equated 
to its value gives H =  134.2 kcal/mole. Although this choice can be defended 
thermodynamically, it was considered too biased as a fitting procedure and, 
instead, an average value of H was taken using the 15 points listed by Wagner 
et al. as their test sequence. This gives H = 118 kcal/mole. The Morse parameters 
were calculated from data given by Herzberg [3]. The resulting surface is shown, 
in the (x, y) plane, in Fig. 1 and in the (X, Y) plane in Fig. 2. (In the figures, 
the energy contours are labelled in kcal/mole.) From the first it can be seen that 
the traditional shape of a reaction surface is preserved. The channels merge 
smoothly into one another over the saddle point and oblique cross-sections show 
the typical Morse profile. A closer inspection shows that the saddle point is lower 
(7 kcal/mole relative to the O+H2 asymptote) than in the original surface 
(13.35 kcal/mole). The original potential turns the corner rather more abruptly 
than the model. This means that the saddle point is at smaller distances 
(r(OH, H H ) =  (1.063, 1.096) compared with (1.211, 1.237) given by this model, 
all distances in/~)  but it is still to be found in the OH channel. Because of this 
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Fig. 1. Potential for the O + H z reaction given by the model in Eq. (5) with H = 118 
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Fig. 2. The potential of  Fig. 1 after the exponential t ransformation 
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change of  shape a point-wise fitting of the surfaces is not very meaningful whereas 
a comparison along the reaction coordinate shows a much better correspondence. 

Fig. 2 shows that the mapping has produced a much simpler surface. The two 
channels have been aligned and the surface shows symmetry (C2v) about its center. 
The contour which passes through the saddle point, that for V-- 7, reduces to a 
pair of straight lines. These will be features of  all the surfaces produced by the 
model (5) and could have practical value in generating points on the surface. 

From the formula for the center given above, it can be seen that the saddle point 
will lie closer to the OH channel, i.e. to (1, 0), when B > A and closer to the HH 
channel, (0, 1), when B < A. This is the qualitative version of the generalization 
made by Hammond on the shape of the transition state. The formula for the 
energy barrier also seems to be in broad agreement with the observations of 
Evans and Polanyi [4] on barriers for reactions in which only the first atom is 
varied but has the extra generality of allowing the third to vary also. 

4. Barrier energies for H transfer reactions 

The surface (5) depends on one parameter, /4, to model the coupling between 
the bonds. If this parameter can be related to the other diatomic parameters, it 
will become possible to predict surfaces from the diatomic information alone. 
The example above shows that this cannot be an accurate surface at all points 
but it can be qualitatively correct and a good approximation in one neighborhood 
such as around the saddle point itself. Since, in many theories, the reaction rate 
is determined by this neighborhood, this can be the key to an understanding of 
the rates of some sufficiently simple reactions in terms of their reactants and 
products. 

The parameter, H, must satisfy several requirements. It should obviously be a 
symmetrical function of  A and B. To retain the saddle point shape it must satisfy 
H > A and H > B but, generally, it is found best that it should exceed these 
bounds by the smallest amount consistent with smooth interpolation. Thus, as 
B ~ 0, H should tend to A and to B as A-~ 0. From a cursory inspection of some 
examples, a plausible value fo r /4 ,  when A = B, is H = 1.2 A. A simple formula 
which meets all these requirements is 

H -- (A 5 - B 5 ) / ( A  4 - B 4) (12) 

and this is proposed as a working hypothesis. An immediate consequence is a 
formula for the barrier height 

W = A 9 ( A  - B ) / ( A  9 - B 9) W R  = B 9 ( A  - B ) / ( A  9 - B9). (13) 

When A = B these give H = 5 A / 4  and W = A / 9 .  This value of H is a little larger 
than that suggested above. For the O - b H 2  potential (12) gives H = 134.7 and, 
hence, W = 13.97 which is in good agreement with the original value. 

To investigate the realism of  this hypothesis the barrier heights have been 
calculated for the hydrogen transfer reactions studied by Johnston and Parr [5]. 
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The values of the Morse parameters were taken from their paper. They claim 
that their calculated results are in good agreement with experiment. Since observed 
activation energies for these reactions involve tunnelling, it was considered better 
not to compare barrier heights directly with experimental activation energies 
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Fig. 3. Reaction barrier heights for non-halogens calculated from equation (13) and compared with 
those of Johnston and Parr [5] 
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Fig. 4. Reaction barrier heights for systems involving halogens calculated from (13) and compared 
with those of Johnston and Parr 
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but with their calculated ones. Fig. 3 shows the barriers calculated by the two 
treatments for systems not involving halogens and Fig. 4 shows those with 
halogens. The symmetrical systems, where the atoms on the two sides are the 
same, have been omitted. These graphs demonstrate a high correlation between 
the results despite the fact that this is a much simpler calculation than that of 
Johnston and Parr. In Fig. 3 it can be seen that a majority of  the points lie close 
to a straight line having unit slope but a small negative intercept though some 
others show a large deviation. In Fig. 4 the points again lie close to a straight 
line, which has slightly less than unit slope and a small positive intercept, except 
for a scatter near the origin. For such a simple theory these results are considered 
satisfactory. The symmetrical systems have been omitted because they have A = B 
and so are most sensitive to the form taken for H. The fact that the halogens lie 
on a different line suggests that the large difference in electronegativity between 
them and hydrogen is giving rise to extra electrostatic terms in the potential. 

5. Analytical potentials 

The form of  the potential in (5) is so simple that it may be regarded as crude 
and ineffective. This would be a misunderstanding of  the significance of the 
exponential mapping (4). This maps the infinite plane of (x, y) into a finite region 
of (X,  Y) bounded by X = 0, Y = 0 and the lines corresponding to the internuclear 
distances becoming zero. In this finite region the polynomials in X and Y form 
a complete set so that any analytical potential can be expressed as a linear 
combination of  powers of  X and Y. The model potential V in (5) can be 
considered as the linear and quadratic terms taken from an exact expression. In 
principle higher powers can be added to produce any desired accuracy. It is 
intended to demonstrate this point later. In practice since the interesting region 
of the plane is the part near the origin the low order powers will be the most 
important. Higher powers become essential to describe the repulsive region 
corresponding to small internuclear distances. In any event there is no reason to 
demand much higher accuracy of the representation of the potential than is 
achieved by the Morse potentials normally taken to represent the diatomic 
asymptotic forms, These quadratic forms in X and in Y, in fact, are not very 
accurate except near the minima when the parameters are determined to achieve 
a close fit there. The general significance of  the Morse potential is that it has the 
correct qualitative shape and can be taken as a good starting approximation to 
the true potential. The potential V has a similar significance but its standard of 
accuracy in relation to the combined variables is lower since only one parameter 
is available to fit the two-dimensional surface whereas the Morse potential has 
three parameters to fit along a line. 

The Morse potential breaks down when potential curves cross or have an avoided 
crossing. This will also be true of  V. In these circumstances the potential is best 
regarded as non-analytic and a more general form of V is required. 

For a reaction in which the bonds broken and formed are covalent rather than 
ionic and which has a single potential surface the model potential (5) is the most 
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general form which includes the linear and quadratic powers of X and Y, those 
which will be the most important in describing the reaction path. The significance 
of V is, therefore, universal. It is the natural generalization of the Morse potential. 

References 

1. Wagner, A. F., Schatz, G. C., Bowman, J. M.: J. Chem. Phys. 74, 4960 (1981) 
2. Whitlock, P. A., Muckerman, J. T., Fisher, E. P.: Theoretical Investigations of the Energetics and 

Dynamics of the Reactions O + H E and C + H 2. Detroit: Wayne State University 1978 
3. Herzberg, G.: Spectra of Diatomic Molecules. New York: Van Nostrand 1950 
4. Evans, M. G., Polyanyi, J. C.: Trans. Faraday Soc. 34, II (1938) 
5. Johnston, H. S., Parr, C.: J. Amer. Chem. Soc. 85, 2544 (1963) 

Received June 13, 1984 


